Teoria dos jogos

Teoria dos jogos

Origem: Wikipédia, a enciclopédia livre.

Ir para: navegação, pesquisa

Teoria dos Jogos é um ramo da matemática aplicada que estuda situações estratégicas onde jogadores escolhem diferentes ações na tentativa de melhorar seu retorno. Inicialmente desenvolvida como ferramenta pra compreender comportamento econômico e depois usada pela Corporação RAND para definir estratégias nucleares, a teoria dos jogos é hoje usada em diversos campos acadêmicos. A partir de 1970 a teoria dos jogos passou a ser aplicada ao estudo do comportamento animal, incluindo evolução das espécies por seleção natural. Devido a interesse em jogos como o dilema do prisioneiro, no qual interesses próprios e racionais prejudicam a todos, a teoria dos jogos vem sendo aplicada na ciência política, ética, filosofia e, recentemente, no jornalismo, área que apresenta inúmeros e diversos jogos, tanto competitivos como cooperativos. Finalmente, a teoria dos jogos despertou a atenção da ciência da computação que a vem utilizando em avanços na inteligência artificial e cibernética.

A teoria dos jogos tornou-se um ramo proeminente da matemática nos anos 30 do século XX, especialmente depois da publicação em 1944 de The Theory of Games and Economic Behavior de John von Neumann e Oskar Morgenstern. A teoria dos jogos distingue-se na economia na medida em que procura encontrar estratégias racionais em situações em que o resultado depende não só da estratégia própria de um agente e das condições de mercado, mas também das estratégias escolhidas por outros agentes que possivelmente têm estratégias diferentes ou objectivos comuns.

Os resultados da teoria dos jogos tanto podem ser aplicados a simples jogos de entretenimento como a aspectos significativos da vida em sociedade. Um exemplo deste último tipo de aplicações é o Dilema do prisioneiro (esse jogo teve sua primeira análise no ano de 1953) popularizado pelo matemático Albert W. Tucker, e que tem muitas implicações no estudo da cooperação entre indivíduos. Os biólogos utilizam a teoria dos jogos para compreender e prever o desfecho da evolução de certas espécies. Esta aplicação da teoria dos jogos à teoria da evolução produziu conceitos tão importantes como o conceito de Estratégia Evolucionariamente Estável, introduzida pelo biólogo John Maynard Smith no seu ensaio Game Theory and the Evolution of Fighting.

A Teoria dos jogos e estratégia, segundo Joseph Lampel, na economia, a teoria dos jogos tem sido usada para examinar a concorrência e a cooperação dentro de pequenos grupos de empresas. A partir daí, era apenas um pequeno passo até a estratégia. Pesquisadores de administração de estratégia têm procurado tirar proveito da teoria dos jogos, pois ela provê critérios valiosos quando lida com situações que permitem perguntas simples, não fornecendo respostas positivas ou negativas, mas ajuda a examinar de forma sistemática várias permutações e combinações de condições que podem alterar a situação. Infelizmente as questões estratégicas da vida real dão origem a grande números de possibilidades. Assim a abordagem não deve ser de resolver questões estratégicas, mas sim de ajudar a ordenar o pensamento estratégico, provendo especialmente um conjunto de conceitos para ajudar a compreender as dinâmicas manobras estratégicas contra os concorrentes.

Em complemento ao interesse acadêmico, a teoria dos jogos vem recebendo atenção da cultura popular. Um pesquisador da Teoria dos Jogos e ganhador do Prémio de Ciências Econômicas em Memória de Alfred Nobel, John Nash, foi sujeito, em 1998, de biografia por Sylvia Nasar e de um filme em 2001 Uma mente brilhante. A teoria dos Jogos também foi tema em 1983 do filme Jogos de Guerra.

Embora similar à teoria da decisão, a teoria dos jogos estuda decisões que são tomadas em um ambiente onde vários jogadores interagem. Em outras palavras, a teoria dos jogos estuda as escolhas de comportamentos ótimos quando o custo e beneficio de cada opção não é fixo, mas depende, sobretudo, da escolha dos outros indivíduos.

Representação dos Jogos

Os jogos estudados pela teoria dos jogos são objetos matemáticos bem definidos. Um jogo consiste de jogadores, um conjunto de movimentos (ou estratégias) disponíveis para estes jogadores, e uma definição de pagamento para cada combinação de estratégia. Existem duas formas de representação de jogos que são comuns na literatura.

Veja também Lista de jogos na teoria dos jogos

Forma normal


Jogador 2 escolhe esquerda

Jogador 2 escolhe direita

Jogador 1 escolhe para cima

4, 3

-1, -1

Jogador 1 escolhe para baixo

0, 0

3, 4

Um jogo na forma normal

O jogo (ou modo estratégia) normal é uma matriz a qual mostra os jogadores, estratégias, e pagamentos (veja o exemplo a direita). Onde existem dois jogadores, um escolherá as linhas e o outro escolherá as colunas. Os pagamentos são registrados no seu interior. O primeiro número é o pagamento recebido pelo jogador da linha (Jogador 1 em nosso exemplo); e o segundo é o pagamento para o jogador da coluna (Jogador 2 em nosso exemplo). Suponha que o Jogador 1 obteve para cima e que o Jogador 2 obteve esquerda, então o Jogador 1 ganha 4, e o Jogador 2 ganha 3.

Quando um jogo é apresentado na forma normal, presume-se que cada jogador atue simultaneamente ou, ao menos, sem conhecer a ação dos outros. Se os jogadores têm alguma informação acerca das escolhas dos outros jogadores, o jogo é habitualmente apresentado na forma extensiva.

Forma extensiva

Um jogo na forma extensiva

http://pt.wikipedia.org/skins-1.5/common/images/magnify-clip.png

Um jogo na forma extensiva

A forma extensiva de um jogo tenta capturar jogos onde a ordem é importante. Os jogos aqui são apresentados como árvores (como apresentado na figura a esquerda). Onde cada vértice (ou nodo) representa um ponto de decisão para um jogador. O jogador é especificado por um número listado no vértice. Os pagamentos são especificados na parte inferior da árvore.

No jogo mostrado aqui, existem dois jogadores, Jogador 1 move primeiro escolhendo entre F ou U. O Jogador 2 vê o movimento do Jogador 1 e então escolhe entre A ou R. Suponha que o Jogador 1 escolha U e então o Jogador 2 escolha A, então o Jogador 1 obterá 8 e o Jogador 2 obterá 2.

A forma extensiva também pode capturar jogos que se movem simultaneamente. Isto pode ser representado com uma linha tracejada ou um circulo que é desenhado contornando dos diferente vértices (isto e, os jogadores não sabem a qual ponto eles estão).

Tipo de Jogos

Simétricos e assimétricos


E

F

E

1, 2

0, 0

F

0, 0

1, 2

Um jogo assimétrico

Um jogo simétrico é um no qual os pagamentos para os jogadores em uma estratégia particular dependem somente da estratégia escolhida, e não de quem está jogando. Se as identidades dos jogadores puderem ser trocadas sem alterar os pagamentos obtidos pela aplicação das suas estratégias, então este é um jogo simétrico. Muitos dos jogos 2×2 comumente estudados são simétricos. As representações padrões do Jogo da Galinha, do Dilema do prisioneiro, e da caça ao veado são todos jogos simétricos. Certos acadêmicos estudam variações assimétricas destes jogos, contudo, a maioria dos pagamentos deste jogos são simétricos.

Os jogos assimétricos mais comuns são jogos onde existem grupos de estratégias diferentes para cada jogador. Por exemplo, o jogo do ultimato e seu similar, o jogo do ditador tem estratégias diferentes para ambos os jogadores. É possível, contudo, para jogos que tenham estratégicas idênticas para ambos os jogadores, que ainda assim sejam assimétricos. Por exemplo, o jogo representado na figura à direita é assimétrico, a despeito de possuir estratégias idênticas para ambos os jogadores.

Soma zero e soma diferente zero


A

B

A

2, −2

−1, 1

B

−1, 1

3, −3

Um jogo de Soma-Zero

Em jogo de soma-zero o beneficio total para todos os jogadores, para cada combinação de estratégias, sempre somam zero (ou falando mais informalmente, um jogador só lucra com base no prejuízo de outro). O Poker exemplifica um jogo de soma zero (ignorando possíveis vantagens da mesa), porque o vencedor recebe exatamente a soma das perdas de seus oponentes. A maioria dos jogos clássicos de tabuleiro é de soma zero, incluindo o Go e o Xadrez.

Muitos dos jogos estudados pelos pesquisadores da teoria dos jogos (incluindo o famoso dilema do prisioneiro) são jogos de soma diferente de zero, porque algumas saídas têm resultados combinados maior ou menor que zero. Informalmente, em jogos de soma diferente de zero, o ganho de um dos jogadores não necessariamente corresponde à perda dos outros.

É possível transformar qualquer jogo em um jogo de soma zero pela adição de jogadores espúrios (freqüentemente chamados de o tabuleiro), para o qual as perdas compensam o total alcançado pelos vencedores.

Simultâneos e sequencial

Jogos simultâneos são jogos onde ambos os jogadores movem-se simultaneamente, ou se eles não se movem simultaneamente, ao menos os jogadores desconhecem previamente as ações de seus adversários (tornando-os efectivamente simultâneos). Jogos sequenciais (ou dinâmicos) são jogos onde o próximo jogador tem conhecimento da jogada de seu antecessor. Isto não necessita ser conhecimento perfeito a cerca de cada ação do jogador antecessor; ele necessita de muito pouca informação. Por exemplo, um jogador deve saber que o jogador anterior não pode realizar uma ação em particular, enquanto ele não sabe quais das outras ações disponíveis o primeiro jogador ira realmente realizar.

A diferença entre jogos simultâneos e sequenciais é capturada nas diferentes representações discutidas acima. Forma normal é usada para representar jogos simultâneos, e a forma extensiva é usada para representar jogos sequenciais.

Informação Perfeita e informação imperfeita

Um jogo de informação imperfeita (as linhas tracejadas representam a parte ignorada pelo jogador 2)

http://pt.wikipedia.org/skins-1.5/common/images/magnify-clip.png

Um jogo de informação imperfeita (as linhas tracejadas representam a parte ignorada pelo jogador 2)

Um importante subconjunto dos jogos seqüenciais consiste dos jogos de informação perfeita. Um jogo é de informação perfeita se todos os jogadores conhecem os movimentos prévios feitos por todos os outros jogadores. Portanto, somente jogos seqüenciais podem ser jogos de informação perfeita, uma vez que nos jogos simultâneos nenhum jogador conhece a ação do outro. A maioria dos jogos estudados na teoria dos jogos são de informação imperfeita, embora alguns jogos interessantes sejam de informação perfeita, incluindo o jogo centipede. Muitos dos jogos populares são jogos de informação perfeita incluindo xadrez, go e mancala.

Informação perfeita é freqüentemente confundida com informação completa, que é um conceito similar. Informação completa requer que cada jogador conheça as estratégias e pagamentos dos outros jogadores, mas não necessariamente suas ações.

Jogos infinitamente longos

Por razões óbvias, jogos como estudados por economista e jogadores no mundo real geralmente terminam em um numero finito de movimentos. Matemáticos puros não estão restritos a isto, e na teoria de conjunto em particular estudam jogos que se prolongam por um número infinito de movimentos, com os vencedores (ou prêmios) não são conhecidos até após todos estes movimentos tenham sido completados.

O foco da atenção é usualmente não tanto qual o melhor caminho para o jogador em tal jogo, mas simplesmente se um ou outro jogador tem uma estratégia vencedora. (Isto pode ser provado, usando o axioma da escolha, que há jogos— mesmo com informação perfeita, e onde as únicas saídas são vencedor ou perdedor— para o qual nenhum jogador tem uma estratégia vencedora.) A existências de tais estratégias, para jogos projetados especificamente para este fim, tem conseqüências importantes na teoria descritiva dos conjuntos.

Usos da teoria dos jogos

Jogos de uma forma ou de outra são vastamente usados em diversas disciplinas acadêmicas. O uso da Teoria dos Jogos é para se conhecer, previamente, o melhor resultado para os jogadores diante das estratégias praticadas.

Economia e negócios

Economista tem usado a teoria dos jogos para analisar um vasto leque de fenômenos econômicos, incluindo leilões, barganhas, oligopólios, formação de rede social, e sistemas de votação. Estas pesquisas usualmente se focam em um conjunto particular de estratégias conhecidas como equilíbrio no jogo. Este conceito de solução é usualmente baseado naquilo que é requerido pelas normas de racionalidade. A mais famosa destas é o equilíbrio de Nash. Um conjunto de estratégias é um equilíbrio de Nash se cada uma representa a melhor resposta para as outras estratégias. Então, se todos os jogadores estiverem jogando a estratégia em um equilíbrio de Nash, eles não terão nenhum incentivo a se desviar dela, desde suas estratégias é a melhor que eles podem obter dado que os outros façam.

Os valores na matriz de ganhos (payoffs) dos jogos são geralmente definidos pela função de utilidade de cada jogador individual. Freqüentemente na modelagem de situações em que os ganhos representam dinheiro, o qual presumivelmente corresponde a uma função de utilidade individual. Esta presunção, contudo, pode ser falha.

Um papel típico da teoria dos jogos na economia seria a utilização de um jogo como uma abstração de alguma situação econômica em particular. Uma ou mais situações conceituais são escolhidas, e o autor demonstra qual conjunto de estratégias apresentados pelo jogo são um equilíbrio para o tipo apropriado para o problema. Economistas sugerem dois usos primários para estas estratégias.

Descritivo

O primeiro uso é para nos informar acerca de como as populações humanas se comportam realmente. Algumas escolas acreditam que se encontrando o equilíbrio dos jogos ele pode predizer como realmente populações humanas irão se comportar quando confrontar com situações análogas a do jogo estudado. Esta visão particular da teoria dos jogos possui atualmente certa descrença. Primeiro, ela é criticada porque precondições assumidas pelos teóricos dos jogos são freqüentemente violadas. Eles devem assumir que os jogadores sempre agem com racionalidade para maximizar seus ganhos (modelo do Homos economicus), mas seres humanos reais freqüentemente agem de forma irracional, ou agem racionalmente para maximizar o ganho de um grande grupo de pessoas (altruísmo). Teóricos dos jogos respondem comparando suas suposições à aquelas usadas pelos físicos. Portanto enquanto suas suposições não sempre se concretização, eles podem tratar a teoria dos jogos como uma razoável idealização ligado aos modelos usados por físicos. Porem, criticas adicionais deste usos da teoria dos jogos tem sido criadas porque alguns experimentos tem demonstrado que indivíduos não jogam por estratégias de equilíbrio. Por exemplo, no jogo Centipede, Jogo da adivinhação em 2/3 da média e no Jogo do ditador, as pessoas habitualmente não jogam no equilíbrio de Nash. Há um debate em andamento relativo a importância deste experimento. [1]. Alternativamente, alguns autores afirmam que o equilíbrio de Nash não produz predições para populações humanas, mas prove uma explicação de porque populações que jogam no equilíbrio de Nash permanecem neste estado. Contudo, a questão de como as populações alcançam este ponto permanece em aberto.

Alguns teóricos dos jogos têm buscado teoria de jogos evolucionaria de forma a resolver estas diferenças. Estes modelos presumem nenhuma racionalidade ou limite de racionalidade por parte dos jogadores. A despeito do nome, a teoria dos jogos evolucionária não presume necessariamente a evolução natural no sentido biológico. Teoria dos jogos evolucionária evolução cultural como a biologia e também modelos de aprendizagem individual (por exemplo, dinâmica de jogos de ficção).

Normativo


Cooperate

Defect

Cooperate

2, 2

0, 3

Defect

3, 0

1, 1

O Dilema do Prisioneiro


Por outro lado, alguns estudiosos vêem a teoria dos jogos não como uma ferramenta para prever o comportamento humano, mas como uma sugestão de como as pessoas devem se comportar. Desde um
equilíbrio de Nash de um jogo constituem umas das melhores repostas para as ações dos outros jogadores, utilizar uma estratégia que faça parte de um equilíbrio de Nash parece apropriado. Porem, isto expõem a teoria dos jogos a algumas criticas. Primeiro, em alguns casos é apropriado jogar em uma estratégia de não equilíbrio se espera que os outros jogadores adotem estratégias de não equilíbrio também. Por exemplo, veja Jogo 2/3 na média.

Segundo, o Dilema do Prisioneiro apresenta outro contra-exemplo em potencial. No Dilema do Prisioneiro, cada jogador persegue seus próprios interesses levando outros jogadores em estado pior do que eles não tivessem perseguindo seus próprios interesses. Alguns estudiosos acreditam que isto demonstra a teoria dos jogos como uma recomendação para comportamento.

Ciência política

Pesquisas na ciência política também têm usado a teoria dos jogos. Uma explicação baseada na teoria dos jogos para a paz democrática é que o debate público e aberto da democracia envia informações claras e confiável a respeitos de sua opinião em relação a outros estados. Em contraste, existe a dificuldade de se conhecer as intenções de lideres não democráticos, o que afeta as concessões a serem feitas, e se as promessas irão ser mantidas. Portanto haverá desconfiança e má vontade efetuar concessões se ao menos uma das partes na disputa e não democrática.[1]

Filosofia

A teoria dos jogos tem demonstrado várias aplicações na filosofia. Respondendo a dois trabalhos de W.V.O. Quine (1960, 1967), David Lewis (1969) usou a teoria dos jogos para desenvolver uma explicação filosófica da convenção. Fazendo isto, ele provou a primeira analise do senso comum e empregou nisto a analise utilizada no jogo da coordenação. Alem disto, ele primeiro sugeriu destes pode compreender o significado em termos de jogos de sinalização. Esta ultima sugestão foi ampliada por vários filósofos desde Lewis (Skyrms 1996, Grim et al. 2004).


Veado

lebre

Veado

3, 3

0, 2

Lebre

2, 0

2, 2

A caçada ao veado

Na ética, alguns autores têm tentado impulsionar o projeto, começando por Thomas Hobbes, para derivar a moralidade do auto-interesse. Desde jogos como o Dilema do prisioneiro apresenta um aparente conflito entre a moralidade e o auto-interesse, explicando porque a cooperação é requerida pelo auto-interesse, sendo um importante componente neste projeto. Esta estratégia comum é um componente da visão contrato social geral (para exemplos, veja Gauthier 1987 e Kavka 1986)

Finalmente, outros autores têm tentado usar a teoria dos jogos evolucionaria de modo a explicar o surgimento de atitudes humanas a cerca da moralidade e comportamentos animais correspondentes. Este autor utilizou vários jogos incluindo o Dilema do prisioneiro, a Caçada ao veado, e o jogo da barganha de Nash como provas de uma explicação para o surgimento de atitudes a cerca da moralidade (veja, por exemplo, Skyrms 1996, 2004; Sober and Wilson 1999)

História da teoria dos jogos

A primeira discussão conhecida da teoria dos jogos ocorreu em uma carta escrita por James Waldegrave em 1713. Nesta carta, Waldegrave propõem uma solução de estratégia mista de minmax para a versão de duas-pessoas do jogo le Her. Isto foi tudo até a publicação de Antoine Augustin Cournot Researches into the Mathematical Principles of the Theory of Wealth em 1838 que estabeleceu os princípios teóricos da teoria dos jogos. Neste trabalho Cournot considera uma dupolio e apresentava uma solução que é uma versão restrita do equilíbrio de Nash.

Embora a analise de Cournot seja mais geral do que a de Waldegrave, a teoria dos jogos realmente não existiu como um campo unificado até que John von Neumann publicou uma série que trabalhos em 1928. Enquanto o matemático Francês Borel possuía algum trabalhos anteriores na teoria dos jogos, von Neumann pode com justiça ser creditado com o inventor da teoria dos jogos. Von Neumann foi um brilhante matemático cujo trabalho longo alcance desde a teoria dos conjunto até seus cálculos que foram chave para o desenvolvimento bomba atômica e de hidrogênio e finalmente o seu trabalho para desenvolvimento de computadores. O trabalho de Von Neumann culminou no livro lançado em 1944 The Theory of Games and Economic Behavior com a co-autoria de Oskar Morgenstern. Este profundo trabalho contem o método para encontrar soluções ótimas para jogos de duas pessoas de soma zero. Durante este período, trabalhos na teoria dos jogos eram primariamente focados na teoria jogos cooperativos, a qual analisa estratégias ótimas para grupos de indivíduos, presumindo que eles possam conjugar seus esforços no que diz respeito a suas estratégias adotadas

Em 1950, a primeira discussão do Dilema do prisioneiro aparece, e um experimento foi conduzido neste jogo pela corporação RAND. Neste mesmo período, John Nash desenvolveu uma definição de uma estratégia ótima para jogos de multi-jogadores onde nenhuma solução ótima ainda tinha sido definida, conhecido como equilíbrio de Nash. Este equilíbrio é suficientemente geral, permitindo sua utilização na analise de jogos não cooperativos alem dos cooperativos.

A teoria dos jogos experimentou um atividade intensa nos anos 50, durante a qual conceitos de jogos na forma extensiva, jogador fictício, jogos repetidos, e o valor de Shapley foi desenvolvido. Alem disto, as primeiras aplicações da teoria dos jogos pra filosofia e ciência política ocorreram durante este período.

Em 1965, Reinhard Selten introduziu seu conceito de solução do equilíbrio perfeito em sub-jogo, o qual foi depois refinado para o equilíbrio de Nash. Em 1967, John Harsanyi desenvolveu o conceito de informação completa e jogos Bayesianos. Ele juntamente com John Nash e Reinhard Selten ganharam o Prémio Nobel de Economia em 1994.

Na década de 70, a teoria dos jogos foi extensivamente aplicadas na biologia, principalmente como resultado de John Maynard Smith e sua estratégia evolucionaria estável. Alem disto, o conceito de equilíbrio correlato, e conhecimento comum foram introduzidos e analizados.

Em 2005, cientista da teoria dos jogos Thomas Schelling e Robert Aumann venceram o Prémio Nobel. Schelling trabalhou no modelos dinâmicos, o primeiro exemplo da teoria jogos evolucionário.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

Livros: A UTOPIA e O PRINCIPE

A UTOPIA

http://www.4shared.com/file/43172108/3834b329/Thomas_Morus_-_Utopia.html?dirPwdVerified=8d6e2e74



O PRINCIPE

http://www.4shared.com/file/43172121/73de690f/Maquiavel_-_O_Principe.html?dirPwdVerified=8d6e2e74

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

Chuva em Caicó

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

Novo Telecurso 2000 + 10, agora incorpora aulas de FILOSOFIA e SOCIOLOGIA

Telecurso 2000 + 10: Projeto ganha novo nome, incorpora disciplinas, aumenta número de aulas e agrega mais tecnologia

Novidades serão apresentadas terça-feira (15/08) no Teatro Popular do Sesi, com um balanço do economista Cláudio de Moura Castro sobre as experiências do projeto na educação brasileira

Telecurso 2000 + 10  é o novo nome do projeto de ensino a distância que já atendeu 5 milhões de pessoas em todo o País e foi escolhido como currículo básico para avaliação de jovens e adultos pelo Ministério da Educação.

As mudanças no conteúdo e na grade curricular desse sistema pioneiro – fruto da parceria entre a Fundação Roberto Marinho, a Federação das Indústrias do Estado de São Paulo, o Sesi-SP e o Senai-SP – serão apresentadas no próximo dia 15 de agosto, no Teatro Popular do Sesi (Av. Paulista, 1313). 

A partir das 15 horas, será realizada palestra com o economista Cláudio de Moura Castro sobre as experiências do Telecurso 2000 na educação brasileira nos últimos anos. Às 17 horas, será mostrado o novo formato do projeto, que passa a incorporar as disciplinas de Filosofia, Artes Plásticas, Música, Teatro e Sociologia, 110 novas aulas, 48 livros e material em DVD. 

Outra novidade é a criação de um banco de dados único, que permitirá o acesso às melhores experiências vivenciadas nos quatro cantos do País – das  telessalas das florestas do Acre aos presídios do Estado de São Paulo –, além de facilitar o intercâmbio entre professores e alunos.       

Lançado há 11 anos, o projeto impressiona pelos resultados. São 27 mil telessalas implementadas em todo o País, 30 mil professores capacitados, 1.500 instituições parceiras, 24 milhões de livros editados e 1,8 milhão de fitas distribuídas. 

Como principais diferenciais de atendimento utilizados pelo Telecurso 2000 + 10, destacam-se a supletividade, aceleração dos estudo, formação de professores, complementação curricular e dinamização do ensino noturno.   
  
Rosângela Gallardo, Agência Indusnet Fiesp

FONTE: http://www.fiesp.com.br/agencianoticias/2006/08/11/7657.ntc

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments







GEOPOLÍTICA


Dominação, petróleo e ideologia


Três hipóteses provocadoras sobre a presença dos EUA no Oriente Médio: o controle sobre os campos petrolíferos visa, mais que tudo, constranger Europa e Japão; Arábia Saudita e Egito jamais poderão ser aliados centrais de Washington; a aliança com Israel frustra o mundo árabe e será fonte de tensões cada vez mais graves


Sílvia Ferabolli, Cláudio César Dutra de Souza


Esse breve ensaio busca responder três questionamentos centrais que intrigam aqueles que acompanham o desenrolar dos conflitos no Oriente Médio. São eles: 1) qual é o real interesse dos Estados Unidos no Oriente Médio? 2) por que a aliança com os dois Estados-chave do Mundo Árabe – o Egito e a Arábia Saudita – não é vista como suficiente para assegurar os interesses norte-americanos na região? 3) por que Israel é percebido como o aliado central e necessário dos Estados Unidos na região? Esse debate, que envolve necessariamente entender do peso do petróleo, do poder e da ideologia nas ações de política externa norte-americana para o Oriente Médio, terá por base o pensamento de Emmanuel Todd e Edward Said sobre tais assuntos.


Todd acredita que fixação dos Estados Unidos no Oriente Médio não decorre do temor de abastecimento insuficiente de petróleo. Metade das importações petrolíferas dos EUA provém do chamado Novo Mundo, que está militarmente seguro para Washington. Se forem somadas as quantidades provenientes desses países à própria produção americana, chega-se a um total de 70% do consumo dos Estados Unidos.


Os países do Golfo Pérsico fornecem apenas 18% do consumo norte-americano. A energia que se trata de controlar não é a dos Estados Unidos, mas a do mundo — especificamente, a da Europa e do Japão, os dois pólos que, economicamente, desafiam a supremacia norte-americana. "A verdade é que, pelo controle dos recursos energéticos necessários à Europa e ao Japão, os Estados Unidos esperam manter a possibilidade de exercer pressões significativas sobre eles." (TODD, 2003, p. 167).


Essa afirmação, feita pelo demógrafo francês, em 2003, vai ao encontro de uma fala do secretário de Estado norte-americano, John Foster Dulles. Ainda em 1958, ele advertia que o fornecimento vital de óleo para a Europa Ocidental, pelo Oriente Médio, tornaria-se crítico se os Estados árabes uniformizassem suas políticas petrolíferas. Hoje, impedir por todos os modos que os países árabes unifiquem suas políticas de petróleo, que empreguem suas reservas em seu próprio interesse (e não dos mercados internacionais), aparece como algo de vital importância para a manutenção da pretensa hegemonia americana no pós-Guerra Fria.


O desgaste da hegemonia dos EUA obriga o país a atacar Estados fracos, como Iraque e Afeganistão, para "mostrar" ao mundo que ainda é indispensável para a defesa do planeta


Por certo, as políticas petrolíferas dos Estados árabes estão parcialmente unificadas via OPEP. Contudo, essas políticas servem aos interesses dos membros dessa organização, especialmente das petromonarquias, não do mundo árabe como um todo. É parte da política norte-americana impedir o desenvolvimento de qualquer forma de integração árabe que possa alterar a correlação de forças na região em favor daqueles que querem mudanças democráticas. Nas palavras de Said,


[ . . . ] assim como as campanhas francesas, britânicas, israelenses e americanas contra Nasser foram desenhadas para derrubar uma força que abertamente demonstrava sua ambição de unificação dos Estados árabes em uma força política independente, o objetivo americano hoje é refazer o mapa do mundo árabe para servir aos seus interesses, não os dos árabes. A política estadunidense gera fragmentação, ausência de ação coletiva e fraqueza política e econômica árabe. (2003a, p. 1)


A invasão norte-americana do Iraque, em 20 de março de 2003, esteve diretamente relacionada com essas questões, pois visava permitir a instauração prolongada de um regime subserviente no país. A Arábia Saudita, desde o 11 de setembro, é uma aliada problemática para os Estados Unidos, já que a maioria dos terroristas envolvidos nos ataques de 2001 eram sauditas, e a possibilidade de tê-la sob controle militar direto, via novo Iraque, certamente deve ser considerada um dos motivadores da intervenção estadunidense.


Porém, o percebido declínio da hegemonia norte-americana também deve ser considerado uma força significativa por trás das ações que levaram à invasão do Iraque. Ainda conforme Todd (2003), o desgaste da hegemonia estadunidense obriga o país a atacar Estados fracos, como o Iraque e o Afeganistão, para mostrar ao mundo que ainda é indispensável para a defesa do planeta; e que a comunidade internacional precisa de sua proteção contra o terrorismo global – o inimigo contemporâneo que veio substituir o comunismo como legitimador das ações imperialistas norte-americanas.


Arábia Saudita e Egito não podem ser o centro da estratégia norte-americana no Oriente Médio porque os regimes árabes, em sua totalidade, são a antítese do modelo norte-americano de democracia e livre mercado. Convencer as elites dos EUA da desejabilidade de criação de um sistema centralizado em uma monarquia absolutista e numa ditadura militar seria negar a supremacia dos valores norte-americanos.


Além disso, a importância dos aspectos culturais não deve ser subestimada:


de um lado, a América, país das mulheres castradoras, cujo anterior presidente foi obrigado a depor numa comissão de inquérito para provar que não dormiu com uma estagiária; de outro, Bin Laden, um terrorista polígamo com seus inúmeros meios-irmãos e meias-irmãs. (TODD, 2003, p. 162)


País ocidental por natureza, Israel é visto pelos norte-americanos como uma democracia virtuosa, moderna e racional. Além disso, há a poderosa AIPAC, centro do lobby sionista


Israel, por outro lado, é um país ocidental por natureza, que é visto pela população norte-americana como uma democracia virtuosa, moderna e racional. Ou seja, o Estado israelense é a antítese dos regimes árabes-islâmicos — pelo menos na percepção de boa parte dos norte-americanos.


Além desse compartilhamento de valores democráticos e liberais capitalistas, as políticas de Israel e dos Estados Unidos são aproximadas por meio do Comitê de Relações Públicas Israelense-Americano – AIPAC – um poderoso lobby que há décadas vem influenciando, desde Washington, a política estadunidense para o Oriente Médio, e cuja força advém de uma população judaica bem organizada, bem conectada, altamente visível, bem-sucedida e abastada e que, por isso mesmo, enfrenta pouquíssima resistência. "Há um saudável temor e respeito pelo AIPAC em todo o país — mas especialmente em Washington, onde, em questão de horas, o Senado quase inteiro pode ser conduzido a assinar uma carta ao presidente em favor de Israel." (SAID, 2003b, p. 98). Já os árabes "são muito fracos, divididos, desorganizados e ignorantes" (SAID, 2003b, p. 96). para fazer frente ao poder político da comunidade sionista norte-americana.


No que tange à terceira questão, pode-se então inferir que a centralidade israelense no esquema estadunidense para o Oriente Médio é assegurada pela afinidade de visões de mundo entre Israel e Estados Unidos e pelo forte lobby sionista que trabalha efetivamente para a manutenção da posição de Israel como o mais importante aliado norte-americano na região.


Essas conclusões parecem corroborar mais uma tese de Said (2003a). Nos mais de cinqüenta anos desde que os Estados Unidos impuseram a sua pax no mundo — e especialmente no pós-Guerra Fria — o país apóia sua política externa para o Oriente Médio em dois princípios únicos e essenciais: a defesa de Israel e o livre fluxo do petróleo árabe. Ambos se opõem diretamente aos desejos de independência dos povos árabes frente à dominação ocidental — que começou há mais de 200 anos, com a invasão napoleônica do Egito, e parece não ter previsão para acabar.


Bibliografia:


SAID, Edward. The Arab Condition. Al-Ahram Weekly, Cairo, May 2003a. Disponível aqui. Acesso em 01 de maio de 2005.


SAID, Edward. Cultura e Política. São Paulo: Boitempo, 2003b.


TODD, Emmanuel. Depois do Império. Rio de Janeiro, Record, 2003.




FONTE: http://diplo.uol.com.br/2008-02,a2246

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

DICIONARIO DE FILOSOFIA - Nicola Abbagnano,


O tão requisitado e caro DICIONARIO DE FILOSOFIA - Nicola Abbagnano, está disponível para download, no disco virtual:


http://www.4shared.com/file/39572761/261bc4f8/DICIONARIO_DE_FILOSOFIA_-_Nicola_Abbagnano.html

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

Links Interessantes:

Para os todos os colegas da Especialização, olhem só o que se encontra disponível na NET.

O LIVRO CONVITE A FILOSOFIA TODO PARA DOWNLOAD ALEM DE OUTRAS OBRAS

http://br.geocities.com/mcrost02/index.htm


 

Enciclopédia de Filosofia

http://encfil.goldeye.info/

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments

NOTAS DA DISCIPLINA: METODOLOGIA DO ENSINO DE FILOSOFIA

ALUNO

NOTAS

Aldo Batista de Azevedo Junior

10,0

Adriano Carlos Pereira dos Santos

8,5

Ana Paula Medeiros de Mariz

8,5

Antônio Carlos Borges

Benjamim Julião de Góis Filho

10,0

Caio César da Silva

8,0

Débora Araújo de Medeiros

7,0

Débora Suzane de Araújo Faria

7,0

Glaidson Carlos de Medeiros

8,5

Joabe Tavares Pereira

8,5

Joildo Dutra de Medeiros

8,5

José Mário de Medeiros

Kerginaldo Araújo de Barros

8,5

Maria Ivone de Souza

Moacir Araújo Dantas

9,5

Raiff Gomes Nonato de Almeida

9,0

Railma Bezerra da Silva

7,5

Reginaldo Gomes da Silva

8,5

Ruxley Bernardino dos Santos

10,0

Suédson Relva Nogueira

7,5

Veridiana Teófila da Silva Costa

9,0

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS
Read Comments